next up previous
Next: Analysis Up: Algebra and Geometry Previous: 1.2. Geometry

1.3. Topology

Papers in journals and proceedings

J.M. AARTS, R.J. FOKKINK, An addition theorem for the color number, Proceedings of the American Mathematical Society, 129 (2001) 2803-2807.

J.M. AARTS, R.J. FOKKINK, G. KRUIJTZER, Morphic numbers, Nieuw Archief voor Wiskunde, Vijfde Serie, 2 (2001) 56-58.

S. BAROV AND J.J. DIJKSTRA, More on compacta with convex projections, Real Analysis Exchange, 26 (2000/2001) 277-284.

S.A. BOGATYI, V.V. FEDORCHUK, J. VAN MILL, On mappings of compact spaces into Cartesian spaces, Topology and its applications, 107 (2000) 13-24.

K. BOUHJAR, J.J. DIJKSTRA, R.D. MAULDIN, No $ n$-point set is $ \sigma$-compact, Proceedings of the American Mathematical Society, 129 (2001) 621-622.

K. BOUHJAR, J.J. DIJKSTRA, J. VAN MILL, Three-point sets, Topology and its Applications, 112 (2001) 215-227.

H. S. BRANDSMA, J. VAN MILL, There are many Kunen compact L-spaces, Proceedings of the American Mathematical Society, 128 (1999) 2165-2170.

A.J.M. DAALDEROP, R.J. FOKKINK, Chaotic homeomorphisms are generic, Topology and its Applications, 102 (2001) 297-302.

J.J. DIJKSTRA, A four-point set that cannot be split, The American Mathematical Monthly, 108 (2001) 168-170.

A. DOW, K.P. HART, The measure algebra does not always embed, Fundamenta Mathematicae, 163 (2000) 163-176.

A. DOW, K.P. HART, A universal continuum of weight $ \aleph$, Transactions of the American Mathematical Society, 353 (2001) 1819-1838.

A. DOW, K.P. HART, Hereditary indecomposability and the Intermediate Value Theorem, Houston Journal of Mathematics, 27 (2001) 431-438.

V.V. FEDORCHUK, J. VAN MILL, Dimensionsgrad for locally connected Polish spaces, Fundamenta Mathematicae, 163 (2000) 77-82.

R.J. FOKKINK, Curves which intersect lines in finite sets, The Bulletin of the London Mathematical Society, 33 (2001) 221-227.

M. VAN HARTSKAMP, J. VAN MILL, Some examples related to colorings, Commentationes Mathematicae Universitatis Carolinae, 41 (2000) 821-827.

A. IDZIK, M. VAN DE VEL, Almost fixed point theory, Nonlinear Analysis, 47 (2001) 619-625.

T.B. JONGELING, T. KOETSIER, Blindspots, self-reference and the prediction paradox, Philosophia, (2001) 10 pages.

T. KOETSIER, Basic Machines from Aristotle to Galilei. In Tosic, S.B. (Ed.), XVI International Conference on Material Flow, Machines and Devices in Industry, Belgrade: Faculty of Mechanical Engineering, University of Belgrade.

T. KOETSIER, Mechanism and Machine Science: its History and its Identity. In Ceccarelli, M. (Ed.), International Symposium on History of Machines and Mechanisms, - Proceedings HMM 2000. Dordrecht: Kluwer Academic Publishers.

T. KOETSIER, La théorie des machines au XVIe siècle: Niccolo Tartaglia, Guidobaldo del Monte, Galileo Galilei, Corpus, 16 (2000) 155-189.

T. KOETSIER, On the prehistory of programmable machines: musical automata, looms, calculators, Mechanism and Machine Theory, 36 (2001) 589-603.

J. VAN MILL, $ C_p(X)$ is not $ G_{\delta\sigma}$: a simple proof, Bulletin of the Polish Academy of Sciences. Mathematics, 47 (2000) 319-323.

J. VAN MILL, On Dow's solution of Bell's problem, Topology and its Applications, 111 (2001) 191-193

J. VAN MILL, R. POL, Note on weakly $ n$-dimensional spaces, Monatshefte der Mathematik, 132 (2001) 25-33.

Reports and pre-prints

J.M. AARTS, R.J. FOKKINK, Mathematical Analysis of Forensic Photo Identification, Report commissioned by Nederlands Forensisch Instituut (2001).

K.P. HART, B.J. VAN DER STEEG, A small transitive family of continuous functions on the Cantor set, arXiv e-print:

K.P. HART, B.J. VAN DER STEEG, On the Ma\html{\'{c\/}}kowiak-Tymchatyn theorem, arXiv e-print:

Other publications

J.M. AARTS, Meetkunde, $ \varepsilon $ 47, Epsilon Uitgaven, Utrecht, (2000) 386 pages.

T. KOETSIER, K. VINTGES, H. SCHWAB (EDITORS), Word ik van filosofie een beter mens?, Uitgeverij Damon, (2001).

J. VAN MILL, The infinite-dimensional topology of function spaces, North-Holland Publishing Co., Amsterdam, (2001), 630 pages.

next up previous
Next: Analysis Up: Algebra and Geometry Previous: 1.2. Geometry